Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Integrin αMβ2 Orchestrates and Accelerates Plasminogen Activation and Fibrinolysis by Neutrophils

Authors: Elzbieta, Pluskota; Dmitry A, Soloviev; Khalil, Bdeir; Douglas B, Cines; Edward F, Plow;

Integrin αMβ2 Orchestrates and Accelerates Plasminogen Activation and Fibrinolysis by Neutrophils

Abstract

Plasmin, the pivotal thrombolytic enzyme, is generated on the surface of many cell types, where urokinase receptor (uPAR)-bound urokinase (uPA) activates cell-bound plasminogen (Plg). It has been reported that neutrophils mediate endogenous thrombolysis involving a uPA-dependent mechanism, and we previously demonstrated that both uPAR and integrin alpha(M)beta(2) recognize uPA to control cell migration and adhesion. In the present study, we report that the alpha(M)beta(2) regulates neutrophil-dependent fibrinolysis. Phorbol 12-myristate 13-acetate (PMA)-stimulated but not resting neutrophils dissolved fibrin clots, and this activity was not only uPA- and Plg-dependent but also alpha(M)beta(2)-dependent. Purified alpha(M)beta(2) directly bound uPA (K(d) = 40 nm) and Plg (K(d) = 1 microm) in a dose-dependent and saturable manner. In Plg activation assays, addition of purified alpha(M)beta(2), but not a control protein, to a single chain uPA (sc-uPA)/Plg mixture, decreased the K(m) from 2 to 0.1 microm, thereby augmenting the overall reaction efficiency by 50-fold. The binding of sc-uPA to alpha(M)beta(2) was critical for the alpha(M)beta(2)-mediated enhancement of plasmin (Plm) generation, because this effect was lost when WT-sc-uPA was replaced with a kringle-less mutant (DeltaK-sc-uPA), which does not bind to alpha(M)beta(2). Plm inactivation by alpha(2)-antiplasmin was significantly delayed when Plm was preincubated with purified, soluble alpha(M)beta(2). When Plg was added to PMA-stimulated neutrophils, both uPA and Plg were co-immunoprecipitated with alpha(M)beta(2.) Thus, assembly of Plg and uPA on integrin alpha(M)beta(2) regulates Plm activity and, thereby, plays a crucial role in neutrophil-mediated thrombolysis.

Related Organizations
Keywords

Fibrin, Time Factors, Dose-Response Relationship, Drug, Neutrophils, Macrophage-1 Antigen, Plasminogen, Ligands, Precipitin Tests, Urokinase-Type Plasminogen Activator, Recombinant Proteins, Protein Structure, Tertiary, Inhibitory Concentration 50, Kinetics, Cell Movement, Mutation, Cell Adhesion, Humans, Tetradecanoylphorbol Acetate, Fibrinolysin, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
gold