Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Type IV Collagen Is Transcriptionally Regulated by Smad1 under Advanced Glycation End Product (AGE) Stimulation

Authors: Noriyuki Iehara; Hidenori Arai; Toshio Doi; Hideharu Abe; Kojiro Nagai; Toru Kita; Toshikazu Takahashi; +1 Authors

Type IV Collagen Is Transcriptionally Regulated by Smad1 under Advanced Glycation End Product (AGE) Stimulation

Abstract

Prolonged exposure to hyperglycemia is now recognized as the most significant causal factor of diabetic complications. Excessive advanced glycation end products (AGEs) as a result of hyperglycemia in tissues or in the circulation may critically affect the progression of diabetic nephropathy. In diabetic nephropathy, glomerulosclerosis is a typical pathologic feature characterized by the increase of the extracellular matrix (ECM). We have reported previously that alpha1 type IV collagen (Col4) is one of the major components of ECM, which is up-regulated by AGEs, and that the overexpression of Col4 is transcriptionally regulated by an unknown transcription factor binding to the promoter. Here we identified this protein as Smad1 by yeast one-hybrid screening. Using chromatin immunoprecipitation and reporter assay, we observed that Smad1 directly regulated transcription for Col4 through the binding of Smad1 to the promoter of Col4. Smad1 was significantly induced along with Col4 in AGE-treated mesangial cells. Moreover, suppression of Smad1 by antisense morpholino resulted in a decrease of AGE-induced Col4 overproduction. To elucidate the interaction between transforming growth factor-beta and Smad1, we investigated whether activin receptor-liked kinase1 (ALK1) was involved in this regulation. AGE stimulation significantly increased the expression of the ALK1 mRNA in mesangial cells. We also demonstrated that Smad1 and ALK1 were highly expressed in human diabetic nephropathy. These results suggest that the modulation of Smad1 expression is responsible for the initiation and progression of diabetic nephropathy and that blocking Smad1 signaling may be beneficial in preventing diabetic nephropathy and other various diabetic complications.

Related Organizations
Keywords

Collagen Type IV, Glycation End Products, Advanced, Extracellular Matrix Proteins, Transcription, Genetic, Activin Receptors, Type II, Smad Proteins, Cell Line, Glomerular Mesangium, Smad1 Protein, DNA-Binding Proteins, Mice, Inbred C57BL, Mice, Two-Hybrid System Techniques, Trans-Activators, Animals, Humans, Diabetic Nephropathies, Promoter Regions, Genetic, Activin Receptors, Type I, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
gold