Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The ALG-2-interacting Protein Alix Associates with CHMP4b, a Human Homologue of Yeast Snf7 That Is Involved in Multivesicular Body Sorting

Authors: Keiichi, Katoh; Hideki, Shibata; Hidenori, Suzuki; Atsuki, Nara; Kazumi, Ishidoh; Eiki, Kominami; Tamotsu, Yoshimori; +1 Authors

The ALG-2-interacting Protein Alix Associates with CHMP4b, a Human Homologue of Yeast Snf7 That Is Involved in Multivesicular Body Sorting

Abstract

Alix (ALG-2-interacting protein X) is a 95-kDa protein that interacts with an EF-hand type Ca(2+)-binding protein, ALG-2 (apoptosis-linked gene 2), through its C-terminal proline-rich region. In this study, we searched for proteins that interact with human AlixDeltaC (a truncated form not containing the C-terminal region) by using a yeast two-hybrid screen, and we identified two similar human proteins, CHMP4a and CHMP4b (chromatin-modifying protein; charged multivesicular body protein), as novel binding partners of Alix. The interaction of Alix with CHMP4b was confirmed by a glutathione S-transferase pull-down assay and by co-immunoprecipitation experiments. Fluorescence microscopic analysis revealed that CHMP4b transiently expressed in HeLa cells mainly exhibited a punctate distribution in the perinuclear area and co-localized with co-expressed Alix. The distribution of CHMP4b partly overlapped the distributions of early and late endosomal marker proteins, EEA1 (early endosome antigen 1) and Lamp-1 (lysosomal membrane protein-1), respectively. Transient overexpression of CHMP4b induced the accumulation of ubiquitinated proteins as punctate patterns that were partly overlapped with the distribution of CHMP4b and inhibited the disappearance of endocytosed epidermal growth factor. In contrast, stably expressed CHMP4b in HEK293 cells was observed diffusely in the cytoplasm. Transient overexpression of AlixDeltaC in stably CHMP4b-expressing cells, however, induced formation of vesicle-like structures in which CHMP4b and AlixDeltaC were co-localized. SKD1(E235Q), a dominant negative form of the AAA type ATPase SKD1 that plays critical roles in the endocytic pathway, was co-immunoprecipitated with CHMP4b. Furthermore, CHMP4b co-localized with SKD1(E235Q) as punctate patterns in the perinuclear area, and Alix was induced to exhibit dot-like distributions overlapped with SKD1(E235Q) in HeLa cells. These results suggest that CHMP4b and Alix participate in formation of multivesicular bodies by cooperating with SKD1.

Keywords

Adenosine Triphosphatases, Cytoplasm, DNA, Complementary, Endosomal Sorting Complexes Required for Transport, Epidermal Growth Factor, Models, Genetic, Calcium-Binding Proteins, Molecular Sequence Data, Cell Cycle Proteins, Endosomes, Endocytosis, Cell Line, Microscopy, Fluorescence, ATPases Associated with Diverse Cellular Activities, Humans, Amino Acid Sequence, Carrier Proteins, Genes, Dominant, Glutathione Transferase, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    190
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
190
Top 10%
Top 1%
Top 1%
gold