Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cooperative Interaction of Hypoxia-inducible Factor-2α (HIF-2α) and Ets-1 in the Transcriptional Activation of Vascular Endothelial Growth Factor Receptor-2 (Flk-1)

Authors: Ursula Englmeier; Regina Heidenreich; Ingo Flamme; Manuel Rauter; Andreas Kappel; Gerd Elvert; Karl H. Plate; +4 Authors

Cooperative Interaction of Hypoxia-inducible Factor-2α (HIF-2α) and Ets-1 in the Transcriptional Activation of Vascular Endothelial Growth Factor Receptor-2 (Flk-1)

Abstract

Interactions between Ets family members and a variety of other transcription factors serve important functions during development and differentiation processes, e.g. in the hematopoietic system. Here we show that the endothelial basic helix-loop-helix PAS domain transcription factor, hypoxia-inducible factor-2alpha (HIF-2alpha) (but not its close relative HIF-1alpha), cooperates with Ets-1 in activating transcription of the vascular endothelial growth factor receptor-2 (VEGF-2) gene (Flk-1). The receptor tyrosine kinase Flk-1 is indispensable for angiogenesis, and its expression is closely regulated during development. Consistent with the hypothesis that HIF-2alpha controls the expression of Flk-1 in vivo, we show here that HIF-2alpha and Flk-1 are co-regulated in postnatal mouse brain capillaries. A tandem HIF-2alpha/Ets binding site was identified within the Flk-1 promoter that acted as a strong enhancer element. Based on the analysis of transgenic mouse embryos, these motifs are essential for endothelial cell-specific reporter gene expression. A single HIF-2alpha/Ets element conferred strong cooperative induction by HIF-2alpha and Ets-1 when fused to a heterologous promoter and was most active in endothelial cells. The physical interaction of HIF-2alpha with Ets-1 was demonstrated and localized to the HIF-2alpha carboxyl terminus and the autoinhibitory exon VII domain of Ets-1, respectively. The deletion of the DNA binding and carboxyl-terminal transactivation domains of HIF-2alpha, respectively, created dominant negative mutants that suppressed transactivation by the wild type protein and failed to synergize with Ets-1. These results suggest that the interaction between HIF-2alpha and endothelial Ets factors is required for the full transcriptional activation of Flk-1 in endothelial cells and may therefore represent a future target for the manipulation of angiogenesis.

Keywords

Cell Nucleus, Binding Sites, Dose-Response Relationship, Drug, Amino Acid Motifs, Blotting, Western, Genetic Vectors, Age Factors, Gene Expression Regulation, Developmental, Cell Differentiation, Exons, Embryo, Mammalian, Cell Line, Genes, Reporter, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, Endothelium, Cell Division, Gene Deletion, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    250
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
250
Top 1%
Top 1%
Top 1%
gold