Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cooperative Interaction of EWS with CREB-binding Protein Selectively Activates Hepatocyte Nuclear Factor 4-mediated Transcription

Authors: Akiyoshi Fukamizu; Junji Ishida; Eisaku Yoshida; Setsuko Kaneko; Makoto Miyagishi; Yoko Shimamoto; Natsumi Araya; +3 Authors

Cooperative Interaction of EWS with CREB-binding Protein Selectively Activates Hepatocyte Nuclear Factor 4-mediated Transcription

Abstract

The EWS gene when fused to transcription factors such as the ETS family ATF-1, Wilms' tumor-1, and nuclear orphan receptors upon chromosomal translocation is thought to contribute the development of Ewing sarcoma and several malignant tumors. Although EWS is predicted to be an RNA-binding protein, an inherent EWS nuclear function has not yet been elucidated. In this study, we found that EWS associates with a transcriptional co-activator CREB-binding protein (CBP) and the hypophosphorylated RNA polymerase II, which are included preferentially in the transcription preinitiation complex. These interactions suggest the potential involvement of EWS in gene transcription, leading to the hypothesis that EWS may function as a co-activator of CBP-dependent transcription factors. Based on this hypothesis, we investigated the effect of EWS on the activation of nuclear receptors that are activated by CBP. Of nuclear receptors examined, hepatocyte nuclear factor 4-dependent transcription was selectively enhanced by EWS but not by an EWS mutant defective for CBP binding. These results suggest that EWS as a co-activator requires CBP for hepatocyte nuclear factor 4-mediated transcriptional activation.

Keywords

Transcriptional Activation, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Nuclear Proteins, Phosphoproteins, CREB-Binding Protein, Cell Line, DNA-Binding Proteins, Hepatocyte Nuclear Factor 4, Trans-Activators, Humans, RNA-Binding Protein EWS, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
gold