Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Reduced Body Weight and Increased Postimplantation Fetal Death in Tyrosylprotein Sulfotransferase-1-deficient Mice

Authors: Ying-Bin, Ouyang; James T B, Crawley; Christopher E, Aston; Kevin L, Moore;

Reduced Body Weight and Increased Postimplantation Fetal Death in Tyrosylprotein Sulfotransferase-1-deficient Mice

Abstract

Tyrosine sulfation is mediated by one of two Golgi isoenzymes, called tyrosylprotein sulfotransferases (TPST-1 and TPST-2). A relatively small number of proteins are known to undergo tyrosine sulfation, including certain adhesion molecules, G-protein-coupled receptors, coagulation factors, serpins, extracellular matrix proteins, and hormones. As one approach to explore the role of these enzymes in vivo and how they might interact in biological systems, we have generated TPST-1-deficient mice by targeted disruption of the Tpst1 gene. Tpst1(+/-) mice appear normal and, when interbred, yield litters of normal size with a Mendelian genetic distribution and an equal sex distribution. Tpst1(-/-) mice appear healthy but have approximately 5% lower average body weight than Tpst1(+/+) controls. In addition, we show that although fertility of Tpst1(-/-) males and females per se is normal, Tpst1(-/-) females have significantly smaller litters because of fetal death between 8.5 and 15.5 days postcoitum. These findings suggest that there are proteins involved in regulation of body weight and reproductive physiology, which require tyrosine sulfation for optimal function that are yet to be described. Our findings also strongly support the conclusion that TPST-1 and TPST-2 have distinct biological roles that may reflect differences in their macromolecular substrate specificity.

Keywords

Male, Mice, Knockout, Litter Size, Body Weight, Chromosome Mapping, Growth, Mice, Animals, Female, Sulfotransferases, Cholecystokinin, Fetal Death

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
gold