Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The NCLX-type Na+/Ca2+ Exchanger NCX-9 Is Required for Patterning of Neural Circuits in Caenorhabditis elegans

Authors: Vishal Sharma; Soumitra Roy; Israel Sekler; Damien M. O'Halloran;

The NCLX-type Na+/Ca2+ Exchanger NCX-9 Is Required for Patterning of Neural Circuits in Caenorhabditis elegans

Abstract

NCLX is a Na+/Ca2+ exchanger that uses energy stored in the transmembrane sodium gradient to facilitate the exchange of sodium ions for ionic calcium. Mammals have a single NCLX, which has been shown to function primarily at the mitochondrion and is an important regulator of neuronal physiology by contributing to neurotransmission and synaptic plasticity. The role of NCLX in developmental cell patterning (e.g. in neural circuits) is largely unknown. Here we describe a novel role for the Caenorhabditis elegans NCLX-type protein, NCX-9, in neural circuit formation. NCX-9 functions in hypodermal seam cells that secrete the axon guidance cue UNC-129/BMP, and our data revealed that ncx-9-/- mutant animals exhibit development defects in stereotyped left/right axon guidance choices within the GABAergic motor neuron circuit. Our data also implicate NCX-9 in a LON-2/heparan sulfate and UNC-6/netrin-mediated, RAC-dependent signaling pathway to guide left/right patterning within this circuit. Finally, we also provide in vitro physiology data supporting the role for NCX-9 in handling calcium exchange at the mitochondrion. Taken together, our work reveals the specificity by which the handling by NCLX of calcium exchange can map to neural circuit patterning and axon guidance decisions during development.

Keywords

Sodium-Calcium Exchanger, Axon Guidance, Mitochondria, Transforming Growth Factor beta, Animals, Calcium, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold