Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Kelch Repeat and BTB Domain Containing Protein 5 (Kbtbd5) Regulates Skeletal Muscle Myogenesis through the E2F1-DP1 Complex

Authors: Rachel M. Gohla; Xiaozhong Shi; Wuming Gong; Naoko Koyano-Nakagawa; Kathy M. Bowlin; Daniel J. Garry;

Kelch Repeat and BTB Domain Containing Protein 5 (Kbtbd5) Regulates Skeletal Muscle Myogenesis through the E2F1-DP1 Complex

Abstract

We have previously isolated a muscle-specific Kelch gene, Kelch repeat and BTB domain containing protein 5 (Kbtbd5)/Kelch-like protein 40 (Klhl40). In this report, we identified DP1 as a direct interacting factor for Kbtbd5 using a yeast two-hybrid screen and in vitro binding assays. Our studies demonstrate that Kbtbd5 interacts and regulates the cytoplasmic localization of DP1. GST pulldown assays demonstrate that the dimerization domain of DP1 interacts with all three of the Kbtbd5 domains. We further show that Kbtbd5 promotes the ubiquitination and degradation of DP1, thereby inhibiting E2F1-DP1 activity. To investigate the in vivo function of Kbtbd5, we used gene disruption technology and engineered Kbtbd5 null mice. Targeted deletion of Kbtbd5 resulted in postnatal lethality. Histological studies reveal that the Kbtbd5 null mice have smaller muscle fibers, a disorganized sarcomeric structure, increased extracellular matrix, and decreased numbers of mitochondria compared with wild-type controls. RNA sequencing and quantitative PCR analyses demonstrate the up-regulation of E2F1 target apoptotic genes (Bnip3 and p53inp1) in Kbtbd5 null skeletal muscle. Consistent with these observations, the cellular apoptosis in Kbtbd5 null mice was increased. Breeding of Kbtbd5 null mouse into the E2F1 null background rescues the lethal phenotype of the Kbtbd5 null mice but not the growth defect. The expression of Bnip3 and p53inp1 in Kbtbd5 mutant skeletal muscle are also restored to control levels in the E2F1 null background. In summary, our studies demonstrate that Kbtbd5 regulates skeletal muscle myogenesis through the regulation of E2F1-DP1 activity.

Related Organizations
Keywords

Mice, Knockout, Mice, Animals, Muscle Proteins, Muscle, Skeletal, Transcription Factor DP1, E2F1 Transcription Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold