Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

An Arginine-rich Motif of Ring Finger Protein 4 (RNF4) Oversees the Recruitment and Degradation of the Phosphorylated and SUMOylated Krüppel-associated Box Domain-associated Protein 1 (KAP1)/TRIM28 Protein during Genotoxic Stress

Authors: Cheng Luo; Yiyin Chung; Xiang Qian Kong; Ching Ying Kuo; Xu Li; David K. Ann; Hsiu Ming Shih; +2 Authors

An Arginine-rich Motif of Ring Finger Protein 4 (RNF4) Oversees the Recruitment and Degradation of the Phosphorylated and SUMOylated Krüppel-associated Box Domain-associated Protein 1 (KAP1)/TRIM28 Protein during Genotoxic Stress

Abstract

Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response.

Related Organizations
Keywords

Amino Acid Motifs, SUMO-1 Protein, Nuclear Proteins, Sumoylation, Tripartite Motif-Containing Protein 28, Repressor Proteins, HEK293 Cells, Proteolysis, Humans, DNA Damage, HeLa Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research