Salmonella Acquires Lysosome-associated Membrane Protein 1 (LAMP1) on Phagosomes from Golgi via SipC Protein-mediated Recruitment of Host Syntaxin6
Salmonella Acquires Lysosome-associated Membrane Protein 1 (LAMP1) on Phagosomes from Golgi via SipC Protein-mediated Recruitment of Host Syntaxin6
Several intracellular pathogens have developed diverse strategies to avoid targeting to lysosomes. However, they universally recruit lysosome-associated membrane protein 1 (LAMP1); the mechanism of LAMP1 recruitment remains unclear. Here, we report that a Salmonella effector protein, SipC, specifically binds with host Syntaxin6 through its C terminus and thereby recruits Syntaxin6 and other accessory molecules like VAMP2, Rab6, and Rab8 on Salmonella-containing phagosomes (SCP) and acquires LAMP1 by fusing with LAMP1-containing Golgi-derived vesicles. In contrast, sipC knock-out:SCP (sipC(-):SCP) or sipC(M398K):SCP fails to obtain significant amounts of Syntaxin6 and is unable to acquire LAMP1. Moreover, phagosomes containing respective knock-out Salmonella like sipA(-), sipB(-), sipD(-), sopB(-), or sopE(-) recruit LAMP1, demonstrating the specificity of SipC in this process. In addition, depletion of Syntaxin6 by shRNA in macrophages significantly inhibits LAMP1 recruitment on SCP. Additionally, survival of sipC(-):Salmonella in mice is found to be significantly inhibited in comparison with WT:Salmonella. Our results reveal a novel mechanism showing how Salmonella acquires LAMP1 through a SipC-Syntaxin6-mediated interaction probably to stabilize their niche in macrophages and also suggest that similar modalities might be used by other intracellular pathogens to recruit LAMP1.
Salmonella typhimurium, Qa-SNARE Proteins, Macrophages, Intracellular Space, Golgi Apparatus, Cell Line, Substrate Specificity, Mice, Protein Transport, Bacterial Proteins, Lysosomal-Associated Membrane Protein 1, Phagosomes, Mutation, Animals
Salmonella typhimurium, Qa-SNARE Proteins, Macrophages, Intracellular Space, Golgi Apparatus, Cell Line, Substrate Specificity, Mice, Protein Transport, Bacterial Proteins, Lysosomal-Associated Membrane Protein 1, Phagosomes, Mutation, Animals
17 Research products, page 1 of 2
- 2006IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
