Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Negative Cross-talk between Calcium-sensing Receptor and β-Catenin Signaling Systems in Colonic Epithelium

Authors: Osvaldo, Rey; Wenhan, Chang; Daniel, Bikle; Nora, Rozengurt; Steven H, Young; Enrique, Rozengurt;

Negative Cross-talk between Calcium-sensing Receptor and β-Catenin Signaling Systems in Colonic Epithelium

Abstract

Here, we examined the role of the extracellular Ca(2+)-sensing receptor (CaSR) in the control of colonic epithelial cell proliferation in vivo and changes in β-catenin triggered by CaSR stimulation in human colonic epithelial cells in vitro. The in vivo studies, using a novel Casr intestinal-specific knock-out mouse, indicate that the genetic ablation of the Casr leads to hyperproliferation of colonic epithelial cells, expansion of the proliferative zone, changes in crypt structure, and enhanced β-catenin nuclear localization. The in vitro results indicate that stimulation of the CaSR, by Ca(2+) or by the calcimimetic R-568, produced a striking and time-dependent decrease in the phosphorylation of β-catenin at Ser-552 and Ser-675, two amino acid residues that promote β-catenin transcriptional activity. The reduced phosphorylation of β-catenin coincided with a decline in its nuclear localization and a marked redistribution to the plasma membrane. Furthermore, CaSR stimulation promoted a down-regulation of β-catenin-mediated transcriptional activation. These studies demonstrate that signaling pathways emanating from the CaSR control colonic epithelial cell proliferation in vivo and suggest that the mechanism involves regulation of β-catenin phosphorylation.

Keywords

Cell Nucleus, Mice, Knockout, Aniline Compounds, Propylamines, Transcription, Genetic, Colon, Active Transport, Cell Nucleus, Down-Regulation, Cell Line, Mice, Phenethylamines, Animals, Humans, Calcium, Calcium Signaling, Intestinal Mucosa, Phosphorylation, Receptors, Calcium-Sensing, beta Catenin, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
gold