Cell Cycle-dependent Phosphorylation and Ubiquitination of a G Protein α Subunit
Cell Cycle-dependent Phosphorylation and Ubiquitination of a G Protein α Subunit
A diverse array of external stimuli, including most hormones and neurotransmitters, bind to cell surface receptors that activate G proteins. Mating pheromones in yeast Saccharomyces cerevisiae activate G protein-coupled receptors and initiate events leading to cell cycle arrest in G1 phase. Here, we show that the Gα subunit (Gpa1) is phosphorylated and ubiquitinated in response to changes in the cell cycle. We systematically screened 109 gene deletion strains representing the non-essential yeast kinome and identified a single kinase gene, ELM1, as necessary and sufficient for Gpa1 phosphorylation. Elm1 is expressed in a cell cycle-dependent manner, primarily at S and G2/M. Accordingly, phosphorylation of Gpa1 in G2/M phase leads to polyubiquitination in G1 phase. These findings demonstrate that Gpa1 is dynamically regulated. More broadly, they reveal how G proteins can simultaneously regulate, and become regulated by, progression through the cell cycle.
- University of North Carolina at Chapel Hill United States
Saccharomyces cerevisiae Proteins, Cell Cycle, Ubiquitination, GTP-Binding Protein alpha Subunits, Gq-G11, Saccharomyces cerevisiae, Phosphorylation, Protein Kinases
Saccharomyces cerevisiae Proteins, Cell Cycle, Ubiquitination, GTP-Binding Protein alpha Subunits, Gq-G11, Saccharomyces cerevisiae, Phosphorylation, Protein Kinases
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
