Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Contrasting Localizations of MALS/LIN-7 PDZ Proteins in Brain and Molecular Compensation in Knockout Mice

Authors: Hidemi Misawa; Yoshimi Kawasaki; David S. Bredt; Neal T. Sweeney; Kiwon Jo; Jack R. Mellor; Roger A. Nicoll;

Contrasting Localizations of MALS/LIN-7 PDZ Proteins in Brain and Molecular Compensation in Knockout Mice

Abstract

Proteins containing PDZ (postsynaptic density-95, discs large, zonula occludens) domains play a general role in recruiting receptors and enzymes to specific synaptic sites. In Caenorhabditis elegans, a complex of three PDZ proteins, LIN-2/7/10, mediates basolateral targeting of a receptor tyrosine kinase. Homologs of these LIN proteins have also been identified in higher organisms, and here we analyze the MALS/Veli (mammalian LIN-7/vertebrate homolog of LIN-7) proteins in brain. Immunohistochemical staining and in situ hybridization show that MALS occur differentially in discrete populations of neurons throughout the brain. Most neurons express only one MALS protein, although some cells contain two or even all three MALS isoforms. At the subcellular level, MALS proteins are found in both dendritic and axonal locations, suggesting that they may regulate processes at both pre- and postsynaptic sites. Targeted disruption of MALS-1 and MALS-2 does not yield a detectable phenotype, and hippocampal synaptic function and plasticity are intact in the MALS-1/2 double knockouts. Interestingly, MALS-3 protein is dramatically induced in the MALS-1/2 double knockouts, implying that dynamic changes in protein expression may play an important regulatory role for this family of synaptic PDZ proteins.

Keywords

Mice, Knockout, Base Sequence, Brain, Membrane Proteins, Helminth Proteins, Immunohistochemistry, Up-Regulation, Mice, Animals, Caenorhabditis elegans Proteins, In Situ Hybridization, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Average
Top 10%
Top 10%
gold