Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Selective Role of G Protein γ Subunits in Receptor Interaction

Authors: Y, Hou; I, Azpiazu; A, Smrcka; N, Gautam;

Selective Role of G Protein γ Subunits in Receptor Interaction

Abstract

Receptor stimulation of nucleotide exchange in a heterotrimeric G protein (alphabetagamma) is the primary event-modulating signaling by G proteins. The molecular mechanisms at the basis of this event and the role of the G protein subunits, especially the betagamma complex, in receptor activation are unclear. In a reconstituted system, a purified muscarinic receptor, M2, activates G protein heterotrimers alphai2beta1gamma5 and alphai2beta1gamma7 with equal efficacy. However, when the alpha subunit type is substituted with alphao, alphaobeta1gamma7 shows a 100% increase in M2-stimulated GTP hydrolysis compared with alphaobeta1gamma5. Using a sensitive assay based on betagamma complex stimulation of phospholipase C activity, we show that both beta1gamma5 and beta1gamma7 form heterotrimers equally well with alphao and alphai. These results indicate that the gamma subunit interaction with a receptor is critical for modulating nucleotide exchange and is influenced by the subunit-type composition of the heterotrimer.

Related Organizations
Keywords

Receptor, Muscarinic M2, Time Factors, Dose-Response Relationship, Drug, Hydrolysis, Receptors, Cell Surface, Heterotrimeric GTP-Binding Proteins, Receptors, Muscarinic, Recombinant Proteins, Kinetics, Guanosine 5'-O-(3-Thiotriphosphate), Type C Phospholipases, Escherichia coli, Guanosine Triphosphate, Baculoviridae, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Average
Top 10%
Top 10%
gold