Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation and Characterization of cDNA for DREF, a Promoter-activating Factor for Drosophila DNA Replication-related Genes

Authors: F, Hirose; M, Yamaguchi; K, Kuroda; A, Omori; T, Hachiya; M, Ikeda; Y, Nishimoto; +1 Authors

Isolation and Characterization of cDNA for DREF, a Promoter-activating Factor for Drosophila DNA Replication-related Genes

Abstract

DREF, a transcription regulatory factor which specifically binds to the promoter-activating element DRE (DNA replication-related element) of DNA replication-related genes, was purified to homogeneity from nuclear extracts of Drosophila Kc cells. cDNA for DREF was isolated with the reverse-transcriptase polymerase chain reaction method using primers synthesized on the basis of partial amino acid sequences and following screening of cDNA libraries. Deduced from the nucleotide sequences of cDNA, DREF is a polypeptide of 701 amino acid residues with a molecular weight of 80,096, which contains three characteristic regions, rich in basic amino acids, proline, and acidic amino acids, respectively. Deletion analysis of bacterially expressed DREF fused with glutathione S-transferase (GST-DREF) indicated that a part of the N-terminal basic amino acid region (16-115 amino acids) is responsible for the specific binding to DRE. A polyclonal and four monoclonal antibodies were raised against the GST-DREF fusion protein. The antibodies inhibited specifically the transcription of DNA polymerase alpha promoter in vitro. Cotransfection experiments using Kc cells demonstrated that overproduction of DREF protein overcomes the repression of the proliferating cell nuclear antigen gene promoter by the zerknüllt gene product. These results confirmed that DREF is a trans-activating factor for DNA replication-related genes. Immunocytochemical analysis demonstrated the presence of DREF polypeptide in nuclei after the eighth nuclear division cycle, suggesting that nuclear accumulation of DREF is important for the coordinate zygotic expression of DNA replication-related genes carrying DRE sequences.

Keywords

Chloramphenicol O-Acetyltransferase, DNA Replication, DNA, Complementary, Embryo, Nonmammalian, Base Sequence, Recombinant Fusion Proteins, Molecular Sequence Data, DNA Footprinting, Gene Expression, Genes, Insect, Immunohistochemistry, Cell Line, Drosophila melanogaster, Mutagenesis, Animals, Drosophila Proteins, Amino Acid Sequence, RNA, Messenger, DNA Primers, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 10%
Top 10%
Top 10%
gold