Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Casein Kinase Iγ Subfamily.

Authors: Melanie H. Cobb; Anna A. DePaoli-Roach; Lanmin Zhai; Joie Rowles; Peter J. Roach; Michelle Italiano; Michael R. Culbertson; +2 Authors
Abstract

Casein kinase I, one of the first protein kinases identified biochemically, is known to exist in multiple isoforms in mammals. Using a partial cDNA fragment corresponding to an isoform termed CK1 gamma, three full-length rat testis cDNAs were cloned that defined three separate members of this subfamily. The isoforms, designated CK1 gamma 1, CK1 gamma 2, and CK1 gamma 3, have predicted molecular masses of 43,000, 45,500, and 49,700. CK1 gamma 3 may also exist in an alternatively spliced form. The proteins are more than 90% identical to each other within the protein kinase domain but only 51-59% identical to other casein kinase I isoforms within this region. Messages for CK1 gamma 1 (2 kilobases (kb)), CK1 gamma 2 (1.5 and 2.4 kb), and CK1 gamma 3 (2.8 kb) were detected by Northern hybridization of testis RNA. Message for CK1 gamma 3 was also observed in brain, heart, kidney, lung, liver, and muscle whereas CK1 gamma 1 and CK1 gamma 2 messages were restricted to testis. All three CK1 gamma isoforms were expressed as active enzymes in Escherichia coli and partially purified. The enzymes phosphorylated typical in vitro casein kinase I substrates such as casein, phosvitin, and a synthetic peptide, D4. Phosphorylation of the D4 peptide was activated by heparin whereas phosphorylation of the protein substrates was inhibited. The known casein kinase I inhibitor CK1-7 also inhibited the CK1 gamma s although less effectively than the CK1 alpha or CK1 delta isoforms. All three CK1 gamma s underwent autophosphorylation when incubated with ATP and Mg2+. The YCK1 and YCK2 genes in Saccharomyces cerevisiae encode casein kinase I homologs, defects in which lead to aberrant morphology and growth arrest. Expression of mammalian CK1 gamma 1 or CK1 gamma 3 restored growth and normal morphology to a yeast mutant carrying a disruption of YCK1 and a temperature-sensitive allele of YCK2, suggesting overlap of function between the yeast Yck proteins and these CK1 isoforms.

Keywords

Male, Saccharomyces cerevisiae Proteins, Base Sequence, Casein Kinase I, Heparin, Genes, Fungal, Genetic Complementation Test, Molecular Sequence Data, Restriction Mapping, Saccharomyces cerevisiae, Rats, Isoenzymes, Multigene Family, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Phosphorylation, Casein Kinases, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
gold