Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16.

Authors: C K, Jiang; T, Magnaldo; M, Ohtsuki; I M, Freedberg; F, Bernerd; M, Blumenberg;

Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16.

Abstract

Epidermal injury results in activation of keratinocytes which produce and respond to growth factors and cytokines and become migratory. Activated keratinocytes express a specific pair of keratin proteins, K6 and K16, distinct from the keratins in the healthy epidermis. Keratinocytes can be activated, for example, by binding of the appropriate ligands to the epidermal growth factor receptor (EGFR). We have analyzed the effects of EGFR activation on keratin gene transcription by transfecting DNAs containing keratin promoters linked to a reporter gene into primary cultures of human epidermal keratinocytes in the presence or absence of EGF or transforming growth factor alpha (TGF alpha), two growth factors that activate EGFR. The activation of EGFR had no effect on the promoters of simple epithelial, basal-layer-specific, or differentiation-specific keratins. In contrast, the expression of K6 and K16 was strongly and specifically induced. A 20-bp DNA segment of the K16 gene promoter conveyed the EGF regulation, functioned in a heterologous construct, and therefore constituted an EGF-responsive element. A nuclear protein specifically bound to this element and to the analogous sequence of the K6 promoter. Thus, EGF specifically induces K6 and K16, markers of activated keratinocytes, via nuclear proteins that bind to EGF-responsive elements in the promoters of these keratin genes.

Keywords

Chloramphenicol O-Acetyltransferase, Keratinocytes, Base Sequence, Epidermal Growth Factor, Transcription, Genetic, Recombinant Fusion Proteins, Molecular Sequence Data, Transforming Growth Factor alpha, Transfection, DNA-Binding Proteins, Gene Expression Regulation, Multigene Family, Humans, Keratins, Promoter Regions, Genetic, Cell Division, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    194
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
194
Top 10%
Top 1%
Top 1%
bronze