Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Ceramide accumulation induces mitophagy and impairs β-oxidation in PINK1 deficiency

Authors: Melissa Vos; Marija Dulovic-Mahlow; Frida Mandik; Lisa Frese; Yuliia Kanana; Sokhna Haissatou Diaw; Julia Depperschmidt; +5 Authors

Ceramide accumulation induces mitophagy and impairs β-oxidation in PINK1 deficiency

Abstract

Significance Ceramide accumulates in Parkinson’s disease–related PINK1 deficiency to initiate ceramide-mediated mitophagy as an alternative pathway to overcome defective PINK1-related mitophagy and the concomitant increased requirements for mitochondrial clearance. Increased ceramide levels negatively correlate with β-oxidation and thus decrease efficiency of the electron transport chain, further increasing the need for mitochondrial clearance. Interfering with this vicious cycle can constitute a novel therapeutic strategy as suggested by our data showing that a reduction of ceramide levels or stimulation of β-oxidation improve the PINK1 -mutant phenotypes.

Related Organizations
Keywords

Mice, Knockout, Mitophagy, Parkinson Disease, Biological Sciences, Fibroblasts, Protein Serine-Threonine Kinases, Ceramides, Lipid Metabolism, Mice, Drosophila melanogaster, Autophagy, Animals, Drosophila Proteins, Humans, Oxidoreductases, Oxidation-Reduction, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 1%
Green
hybrid