Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor–ligand bridge protein

Authors: Edward M. Callaway; John A. Young; Jiwon Choi;

Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor–ligand bridge protein

Abstract

Both treatment of disease and basic studies of complex tissues can benefit from directing viral vector infection to specific cell types. We have used a unique cell targeting method to direct viral vector transduction to cerebral cortical neurons expressing the neuregulin (NRG) receptor ErbB4; both NRG and ErbB4 have been implicated in schizophrenia, and ErbB4 expression in cerebral cortex is known to be restricted to inhibitory neurons. We find that a bridge protein composed of the avian viral receptor TVB fused to NRG, along with EnvB-psuedotyped virus, is able to direct infection selectively to ErbB4-expressing inhibitory cortical neurons in vivo. Interestingly, although ErbB4 is expressed in a broad range of cortical inhibitory cell types, NRG-dependent infection is restricted to a more selective subset of inhibitory cell types. These results demonstrate a tool that can be used for further studies of NRG and ErbB receptors in brain circuits and demonstrate the feasibility for further development of related bridge proteins to target gene expression to other specific cell types in complex tissues.

Related Organizations
Keywords

Cerebral Cortex, Mice, Knockout, Mice, Inbred ICR, Receptor, ErbB-4, Base Sequence, Recombinant Fusion Proteins, Genetic Vectors, Green Fluorescent Proteins, Mice, Transgenic, Ligands, Rats, Avian Proteins, ErbB Receptors, Mice, Interneurons, Rabies virus, Animals, Receptors, Virus, DNA Primers, Neuregulins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
bronze