Powered by OpenAIRE graph

Paternally Inherited Inactivating Mutations of theGNAS1Gene in Progressive Osseous Heteroplasia

Authors: Eileen M, Shore; Jaimo, Ahn; Suzanne, Jan de Beur; Ming, Li; Meiqi, Xu; R J McKinlay, Gardner; Michael A, Zasloff; +3 Authors

Paternally Inherited Inactivating Mutations of theGNAS1Gene in Progressive Osseous Heteroplasia

Abstract

Progressive osseous heteroplasia (POH), an autosomal dominant disorder, is characterized by extensive dermal ossification during childhood, followed by disabling and widespread heterotopic ossification of skeletal muscle and deep connective tissue. Occasional reports of mild heterotopic ossification in Albright's hereditary osteodystrophy (AHO) and a recent report of two patients with AHO who had atypically extensive heterotopic ossification suggested a common genetic basis for the two disorders. AHO is caused by heterozygous inactivating mutations in the GNAS1 gene that result in decreased expression or function of the alpha subunit of the stimulatory G protein (Gsalpha) of adenylyl cyclase.We tested the hypothesis that GNAS1 mutations cause POH, using the polymerase chain reaction to amplify GNAS1 exons and exon-intron boundaries in 18 patients with sporadic or familial POH.Heterozygous inactivating GNAS1 mutations were identified in 13 of the 18 probands with POH. The defective allele in POH is inherited exclusively from fathers, a result consistent with a model of imprinting for GNAS1. Direct evidence that the same mutation can cause either POH or AHO was observed within a single family, in which the phenotype correlated with the parental origin of the mutant allele.Paternally inherited inactivating GNAS1 mutations cause POH. This finding extends the range of phenotypes derived from haplo insufficiency of GNAS1, provides evidence that imprinting is a regulatory mechanism for GNAS1 expression, and suggests that Gsalpha is a critical negative regulator of osteogenic commitment in nonosseous connective tissues.

Keywords

Male, Heterozygote, Base Sequence, Ossification, Heterotopic, DNA Mutational Analysis, Molecular Sequence Data, Gene Expression, Penetrance, Polymerase Chain Reaction, Pedigree, Fathers, Phenotype, Child, Preschool, Mutation, GTP-Binding Protein alpha Subunits, Gs, Humans, Female, RNA, Messenger, Child

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    267
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
267
Top 1%
Top 1%
Top 1%