Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Society ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Society Transactions
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Society Transactions
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes

Authors: Shinya Fushinobu; Maher Abou Hachem;

Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes

Abstract

Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.

Country
Denmark
Keywords

Glycoside Hydrolases, Protein Conformation, Oligosaccharides, Substrate Specificity, Bacterial Proteins, Species Specificity, Carbohydrate Metabolism, /dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being; name=SDG 3 - Good Health and Well-being, Bifidobacterium, Oxidoreductases, Review Articles, Aldehyde-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
hybrid