Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The N-terminal domain of the human eIF2β subunit and the CK2 phosphorylation sites are required for its function

Authors: Franc, Llorens; Anna, Duarri; Eduard, Sarró; Nerea, Roher; Maria, Plana; Emilio, Itarte;

The N-terminal domain of the human eIF2β subunit and the CK2 phosphorylation sites are required for its function

Abstract

CK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2α evidenced the direct involvement of this protein kinase in eIF2β phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2β or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2β phosphorylation, whereas phosphorylation at Ser67 seems more restricted. In vitro phosphorylation of eIF2β also pointed to Ser2 as a preferred site for CK2 phosphorylation. Overexpression of the eIF2β S2/67A mutant slowed down the rate of protein synthesis stimulated by serum, although less markedly than the overexpression of the Δ2–138 N-terminal-truncated form of eIF2β (eIF2β-CT). Mutation at Ser2 and Ser67 did not affect eIF2β integrating into the eIF2 trimer or being able to complex with eIF5 and CK2α. The eIF2β-CT form was also incorporated into the eIF2 trimer but did not bind to eIF5. Overexpression of eIF2β slightly decreased HeLa cell viability, an effect that was more evident when overexpressing the eIF2β S2/67A mutant. Cell death was particularly marked when overexpressing the eIF2β-CT form, being detectable at doses where eIF2β and eIF2β S2/67A were ineffective. These results suggest that Ser2 and Ser67 contribute to the important role of the N-terminal region of eIF2β for its function in mammals.

Related Organizations
Keywords

Binding Sites, Gene Expression Profiling, Eukaryotic Initiation Factor-2, Protein Structure, Tertiary, Protein Biosynthesis, Mutation, Humans, Amino Acid Sequence, Phosphorylation, Casein Kinase II, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Average
bronze