Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2007
versions View all 2 versions

RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest

Authors: Kikuo Ohno; Yusuke Nakamura; Issei Imoto; Chizu Tanikawa; Kuniyasu Saigusa; Masaru Aoyagi; Johji Inazawa;

RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest

Abstract

To identify target genes for the hemizygous deletions of chromosome 13 that are recurrently observed in malignant gliomas, we performed genome-wide DNA copy-number analysis using array-based comparative genomic hybridization and gene expression analysis using an oligonucleotide-array. The response gene to complement 32 (RGC32) at 13q14.11 was identified as a deletion target, and its expression was frequently silenced in glioma cell lines compared with normal brain. Levels of RGC32 mRNA tended to decrease toward higher grades of primary astrocytomas, especially in tumors with mutations of p53. Expression of RGC32 mRNA was dramatically increased by exogenous p53 in a p53-mutant glioma cell line, and also by endogenous p53 in response to DNA damage in p53+/+ colon-cancer cells, but not in isogenic p53-/- cells. Chromatin immunoprecipitation and reporter assays demonstrated binding of endogenous p53 protein to the promoter region of the RGC32 gene, implying p53-dependent transcriptional activity. Transiently and stably overexpressed RGC32 suppressed the growth of glioma cells, probably owing to induction of G2/M arrest. Immunocytochemical analysis revealed a concentration of RGC32 protein at the centrosome during mitosis. RGC32 formed a protein complex with polo-like kinase 1 and was phosphorylated in vitro. These observations implied a novel mechanism by which p53 might negatively regulate cell-cycle progression by way of this newly identified transcriptional target. Our results provide the first evidence that RGC32 might be a possible tumor-suppressor for glioma, that it is directly induced by p53, and that it mediates the arrest of mitotic progression.

Keywords

G2 Phase, Chromatin Immunoprecipitation, Chromosomes, Human, Pair 13, Mitosis, Muscle Proteins, Cell Cycle Proteins, Nerve Tissue Proteins, Glioma, Protein Serine-Threonine Kinases, Response Elements, Gene Expression Regulation, Neoplastic, Proto-Oncogene Proteins, Tumor Cells, Cultured, Humans, RNA, Messenger, Chromosome Deletion, Tumor Suppressor Protein p53, Cell Division, Gene Deletion, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze