Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions

Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer

Authors: B A, Patrick; X, Gong; A K, Jaiswal;

Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer

Abstract

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic enzyme that protects cells against chemical and radiation-induced oxidative stress and skin cancer. Disruption of NQO1 gene in mice showed thinning of skin epithelium and loss of cytokeratin 14, an early marker of skin differentiation. Immunohistochemistry and western analysis demonstrated downregulation of p63 in NQO1-/- mouse skin, as compared with wild-type (WT) mouse. Further analysis including modulation of NQO1 expression revealed a direct correlation between the levels of NQO1 and p63 in skin-derived keratinocytes and dermal fibroblasts. Modulation of proteasomal activity revealed that p63 is degraded by 20S proteasome and that this degradation is significantly rescued by NQO1. Coimmunoprecipitation studies showed that NQO1 interacts directly with p63 but not 20S to protect against this degradation. In addition, benzo[a]pyrene treatment led to induction of NQO1 and stabilization of p63 in WT but not in NQO1-/- mouse skin and keratinocytes. These data suggest that NQO1 controls stabilization of p63 and progression towards keratinocyte differentiation leading to normal skin development and presumably skin carcinogenesis.

Keywords

Keratinocytes, Male, Proteasome Endopeptidase Complex, Skin Neoplasms, Blotting, Western, Keratin-14, Cell Differentiation, Fibroblasts, Phosphoproteins, Polymerase Chain Reaction, Epithelium, Mice, Inbred C57BL, Mice, Oxidative Stress, Benzo(a)pyrene, NAD(P)H Dehydrogenase (Quinone), Trans-Activators, Animals, Immunoprecipitation, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research