Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

p53, secreted by K-Ras–Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker

Authors: S-H, Lee; S-J, Lee; J-Y, Chung; Y-S, Jung; S-Y, Choi; S H, Hwang; D, Choi; +2 Authors

p53, secreted by K-Ras–Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker

Abstract

p53 is eliminated from K-Ras-mutated cancer cells through direct interaction with Snail. However, it is not achieved through proteasome-mediated degradation or transcriptional repression. Here we provide evidence that p53, binding with Snail, is exported from a K-Ras-mutated cell through a vesicle transport-like mechanism, independently using a p53-nuclear-exporting mechanism. Although we can detect p53 in culture media, a majority of p53 might be degraded by extracellular proteases. Thus, we can recover the secreted p53 in culture media by the inhibition of protease and endocytosis. In addition, a considerable amount of p53 is endocytosed by neighboring cells. As p53 resorption occurs in a K-Ras-dependent manner, treatment of recombinant p53 is detected in the whole-cell lysate of K-Ras-mutated cells, but not in that of wild-type cells. Using the property of p53, we can deliver the chemical (propidium iodine) into K-Ras mutated cells selectively. In contrast, Snail, a co-secreted protein with p53 in response to oncogenic K-Ras, shows resistance to endocytosis and protease, and results in remaining in the media. Thus, we can detect an autoantibody against Snail in the serum of a human cancer patient. Our finding can be used for a mutant K-Ras-specific anticancer drug delivery system and for the diagnosis of pancreatic, colon and lung cancers.

Related Organizations
Keywords

Drug Delivery Systems, Neoplasms, ras Proteins, Humans, Snail Family Transcription Factors, Tumor Suppressor Protein p53, Transport Vesicles, Autoantibodies, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze