Next-generation sequencing to generate interactome datasets
Next-generation sequencing to generate interactome datasets
Next-generation sequencing has not been applied to protein-protein interactome network mapping so far because the association between the members of each interacting pair would not be maintained in en masse sequencing. We describe a massively parallel interactome-mapping pipeline, Stitch-seq, that combines PCR stitching with next-generation sequencing and used it to generate a new human interactome dataset. Stitch-seq is applicable to various interaction assays and should help expand interactome network mapping.
- Dana-Farber Cancer Institute United States
- Harvard University United States
- Harvard Medical School United States
- Cornell University United States
- Center for Systems Biology United States
Open Reading Frames, Two-Hybrid System Techniques, Protein Interaction Mapping, Humans, Sequence Analysis, DNA, Databases, Protein, Polymerase Chain Reaction
Open Reading Frames, Two-Hybrid System Techniques, Protein Interaction Mapping, Humans, Sequence Analysis, DNA, Databases, Protein, Polymerase Chain Reaction
794 Research products, page 1 of 80
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).237 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
