Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 1996 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 1997
versions View all 2 versions

Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories

Authors: K C Herman; H E Collins; RS Hawley; Rachael L French; Schuetz Cd; K E Koehler; LD Madden; +2 Authors

Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories

Abstract

Recent studies of human oocytes have demonstrated an enrichment for distal exchanges among meiosis I (MI) nondisjunction events and for proximal exchanges among meiosis II (MII) events. Our characterization of 103 cases of spontaneous X chromosome nondisjunction in Drosophila oocytes strongly parallels these observations. The recombinational histories of MI (97/103) and MII (6/103) nondisjunctional ova were strikingly different. MI nondisjunction occurred primarily in oocytes with non-exchange X chromosomes; of the new nondisjoining exchange bivalents, most carried distal crossovers. Thus, spontaneous MI nondisjunction reflects the failure of the achiasmate segregation systems. MII nondisjunction occurred only in oocytes with proximal exchanges. We propose several models to explain how very proximal exchanges might impair proper segregation.

Related Organizations
Keywords

Genetic Markers, Male, Recombination, Genetic, X Chromosome, Centromere, Mitosis, Meiosis, Nondisjunction, Genetic, Heterochromatin, Oocytes, Animals, Humans, Drosophila, Female, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 10%
Top 10%
Top 10%