Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Cell Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Cell Biology
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction

Authors: Daming, Gao; Hiroyuki, Inuzuka; Alan, Tseng; Rebecca Y, Chin; Alex, Toker; Wenyi, Wei;

Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction

Abstract

Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 overexpression in many human cancers. However, the mechanisms underlying elevated Skp2 expression are still unknown. Here we show that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC-Cdh1 ubiquitin ligase complex. We show further that Akt1 phosphorylates Skp2 at Ser 72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser 72 is localized within a putative nuclear localization sequence and that phosphorylation of Ser 72 by Akt leads to cytoplasmic translocation of Skp2. This finding expands our knowledge of how specific signalling kinase cascades influence proteolysis governed by APC-Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression.

Related Organizations
Keywords

Cytoplasm, Transcription, Genetic, Casein Kinase I, Protein Stability, Molecular Sequence Data, PTEN Phosphohydrolase, Anaphase-Promoting Complex-Cyclosome, Mice, Phosphatidylinositol 3-Kinases, Phosphoserine, Protein Transport, Animals, Humans, Amino Acid Sequence, Phosphorylation, Protein Processing, Post-Translational, Proto-Oncogene Proteins c-akt, S-Phase Kinase-Associated Proteins, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    232
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
232
Top 1%
Top 1%
Top 1%
bronze