Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Modern Pathologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Modern Pathology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Modern Pathology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Modern Pathology
Article . 2006
versions View all 2 versions

Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression

Authors: Zhihong, Zhang; Daniel G, Rosen; Jorge L, Yao; Jiaoti, Huang; Jinsong, Liu;

Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression

Abstract

Prostate carcinoma is a hormonally driven age-related neoplasm. Cellular senescence is an age-related process where cells remain metabolically active but in a growth-arrested state at the G1 phase. p14(ARF), p15(INK4b), and p16(INK4a), which are known to regulate G1 cell cycle arrest, and the tumor necrosis factor receptor superfamily member decoy receptor 2 (DCR2), have been recently identified as senescence markers. The purpose of this study was to characterize and compare the expression of p14(ARF), p15(INK4b), p16(INK4a), and DCR2 in tissue microarrays containing cases of normal prostate, nodular hyperplasia, prostate intraepithelial neoplasia (PIN), and malignant prostate cancer tissue. We performed immunohistochemical staining for p14(ARF), p15(INK4b), p16(INK4a), and DCR2 in tissue microarray blocks containing 41 cores of normal prostate, 65 cores of nodular hyperplasia, 21 cores of PIN, 69 cores of low-grade prostate carcinoma, and 42 cores of high-grade prostate carcinoma, derived from 80 cases of prostatectomy with adenocarcinomas. We detected positive staining of p16(INK4a) in 19% of the PIN, 25% of the low-grade carcinoma, and 43% of the high-grade carcinoma specimens but none in the normal prostate and nodular hyperplasia specimens. Expression of p14(ARF) revealed very high levels of expression in normal tissues (83%), nodular hyperplasia (88%), PIN (89%), and cancer cells (100%). P15(INK4b) and DCR2 were found positive in 81 and 33% normal, 46 and 10% nodular hyperplasia, 74 and 36% PIN tissues, 87 and 89% low-grade carcinomas, and 100 and 93% high-grade carcinomas. There is an increased protein expression of senescence-associated molecular markers, indicating that cellular senescence might play a role in prostate carcinoma. Because p16(INK4a)-positive cells were detected only in premalignant lesions and carcinomas but not in normal or benign tissues, p16(INK4a) may aid in the diagnosis of PIN and prostate cancer in difficult cases.

Keywords

Male, Prostatic Intraepithelial Neoplasia, Prostatic Hyperplasia, Prostatic Neoplasms, Adenocarcinoma, Immunohistochemistry, Receptors, Tumor Necrosis Factor, Tumor Necrosis Factor Decoy Receptors, Cell Transformation, Neoplastic, Tissue Array Analysis, Tumor Suppressor Protein p14ARF, Biomarkers, Tumor, Humans, Cyclin-Dependent Kinase Inhibitor p16, Cyclin-Dependent Kinase Inhibitor p15, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze