Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Th2 Cytokines Act on S100/A11 to Downregulate Keratinocyte Differentiation

Authors: Jasmina S. Redzic; Donald Y.M. Leung; Lianghua Bin; Heather R. Fairchild; Kirk C. Hansen; Byung Eui Kim; Michael D. Howell; +1 Authors

Th2 Cytokines Act on S100/A11 to Downregulate Keratinocyte Differentiation

Abstract

Atopic dermatitis (AD) is an inflammatory skin disease associated with frequent skin infection and impaired skin barrier function. Recent studies indicate that increased Th2 cytokine expression contributes to reduction in antimicrobial peptides and reduced filaggrin (FLG) expression, however, the mechanisms leading to this effect is unknown. Using proteomics, we found the S100 calcium-binding protein A11 (S100/A11) to be significantly downregulated in the presence of IL-4 and IL-13. Culturing keratinocytes with increased calcium concentrations significantly induced S100/A11 expression. This corresponded with an increase in human beta-defensin (HBD)-3 and FLG expression. Interference of S100/A11 expression, by siRNA, inhibited induction of HBD-3 and FLG. Furthermore p21, a cyclin-dependent kinase inhibitor downstream of S100/A11, was required for calcium-mediated induction of HBD-3 and FLG. Importantly, transduction of p21-recombinant protein into keratinocytes prevented IL-4/IL-13-mediated inhibition of FLG and HBD-3 expression. S100/A11 and p21 gene expression was also found to be significantly lower in acute and chronic AD skin. This study demonstrates an important role for S100/A11 and p21 in regulating skin barrier integrity and the innate immune response.

Keywords

Adult, Cyclin-Dependent Kinase Inhibitor p21, Keratinocytes, Down-Regulation, Dermatology, Filaggrin Proteins, Biochemistry, Cell Line, Dermatitis, Atopic, Intermediate Filament Proteins, Humans, Molecular Biology, Cells, Cultured, Interleukin-13, Dose-Response Relationship, Drug, S100 Proteins, Cell Differentiation, Cell Biology, Middle Aged, Case-Control Studies, Acute Disease, Chronic Disease, Calcium, Interleukin-4

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    205
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
205
Top 1%
Top 10%
Top 10%
hybrid