Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular and Molecular Immunology
Article . 2015 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular and Molecular Immunology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions

Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells

Authors: Herren Wu; Ronald Herbst; Steven Coats; Anna Zacco; Jie Zhu; Robert M. Woods; Christine Kiefer; +6 Authors

Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells

Abstract

Immunoglobulin E (IgE) plays a key role in allergic asthma and is a clinically validated target for monoclonal antibodies. Therapeutic anti-IgE antibodies block the interaction between IgE and the Fc epsilon (Fcε) receptor, which eliminates or minimizes the allergic phenotype but does not typically curtail the ongoing production of IgE by B cells. We generated high-affinity anti-IgE antibodies (MEDI4212) that have the potential to both neutralize soluble IgE and eliminate IgE-expressing B-cells through antibody-dependent cell-mediated cytotoxicity. MEDI4212 variants were generated that contain mutations in the Fc region of the antibody or alterations in fucosylation in order to enhance the antibody's affinity for FcγRIIIa. All MEDI4212 variants bound to human IgE with affinities comparable to the wild-type (WT) antibody. Each variant was shown to inhibit the interaction between IgE and FcεRI, which translated into potent inhibition of FcγRI-mediated function responses. Importantly, all variants bound similarly to IgE at the surface of membrane IgE expressing cells. However, MEDI4212 variants demonstrated enhanced affinity for FcγRIIIa including the polymorphic variants at position 158. The improvement in FcγRIIIa binding led to increased effector function in cell based assays using both engineered cell lines and class switched human IgE B cells. Through its superior suppression of IgE, we anticipate that effector function enhanced MEDI4212 may be able to neutralize high levels of soluble IgE and provide increased long-term benefit by eliminating the IgE expressing B cells before they differentiate and become IgE secreting plasma cells.

Related Organizations
Keywords

B-Lymphocytes, Cell Membrane, Receptors, IgG, Antibody-Dependent Cell Cytotoxicity, CHO Cells, Immunoglobulin E, Antibodies, Neutralizing, Cell Degranulation, Antibodies, Anti-Idiotypic, Rats, Cricetulus, Solubility, Cricetinae, Animals, Humans, Calcium, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Green
hybrid