Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1997
versions View all 2 versions

Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension

Authors: M, Uehata; T, Ishizaki; H, Satoh; T, Ono; T, Kawahara; T, Morishita; H, Tamakawa; +4 Authors

Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension

Abstract

Abnormal smooth-muscle contractility may be a major cause of disease states such as hypertension, and a smooth-muscle relaxant that modulates this process would be useful therapeutically. Smooth-muscle contraction is regulated by the cytosolic Ca2+ concentration and by the Ca2+ sensitivity of myofilaments: the former activates myosin light-chain kinase and the latter is achieved partly by inhibition of myosin phosphatase. The small GTPase Rho and its target, Rho-associated kinase, participate in this latter mechanism in vitro, but their participation has not been demonstrated in intact muscles. Here we show that a pyridine derivative, Y-27632, selectively inhibits smooth-muscle contraction by inhibiting Ca2+ sensitization. We identified the Y-27632 target as a Rho-associated protein kinase, p160ROCK. Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models. Our findings indicate that p160ROCK-mediated Ca2+ sensitization is involved in the pathophysiology of hypertension and suggest that compounds that inhibit this process might be useful therapeutically.

Related Organizations
Keywords

Male, Pyridines, Guinea Pigs, Intracellular Signaling Peptides and Proteins, In Vitro Techniques, Protein Serine-Threonine Kinases, Amides, Muscle, Smooth, Vascular, Rats, Radioligand Assay, COS Cells, Hypertension, Cell Adhesion, Animals, Humans, Calcium, Rabbits, Enzyme Inhibitors, Antihypertensive Agents, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3K
Top 0.1%
Top 0.01%
Top 0.1%