Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1994
versions View all 2 versions

Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin

Authors: C, Oubridge; N, Ito; P R, Evans; C H, Teo; K, Nagai;

Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin

Abstract

The crystal structure of the RNA-binding domain of the small nuclear ribonucleoprotein U1A bound to a 21-nucleotide RNA hairpin has been determined at 1.92 A resolution. The ten-nucleotide RNA loop binds to the surface of the beta-sheet as an open structure, and the AUUGCAC sequence of the loop interacts extensively with the conserved RNP1 and RNP2 motifs and the C-terminal extension of the RNP domain. These interactions include stacking of RNA bases with aromatic side chains of proteins and many direct and water-mediated hydrogen bonds. The structure reveals the stereochemical basis for sequence-specific RNA recognition by the RNP domain.

Keywords

Models, Molecular, Binding Sites, Base Sequence, Molecular Sequence Data, RNA-Binding Proteins, Hydrogen Bonding, Crystallography, X-Ray, Protein Structure, Secondary, Protein Structure, Tertiary, Ribonucleoprotein, U1 Small Nuclear, RNA, Small Nuclear, Spliceosomes, Nucleic Acid Conformation, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    887
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
887
Top 1%
Top 0.1%
Top 0.1%