Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1985 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1985
versions View all 2 versions

Characterization of 64-, 123- and 182-base-pair exons in the mouse α2(IV) collagen gene

Authors: Markku Kurkinen; Denise P. Barlow; Louise T. Chow; Michael P. Bernard;

Characterization of 64-, 123- and 182-base-pair exons in the mouse α2(IV) collagen gene

Abstract

Genes encoding types I, II and III collagens (fibrillar collagens) contain many discrete-size exons, most of them 54 base pairs (bp) long, in addition to the 45-, 99-, 108- and 162-bp exons. It has been suggested that these collagen genes evolved from an ancestral coding unit of 54 bp. Type IV collagen is a specific component of basement membranes and contains two genetically distinct polypeptides, the alpha 1(IV) and alpha 2(IV) chains. It differs from the types I-III collagens in that it contains interruptions in the Gly-X-Y repeat sequence and does not form ordered fibrillar structures. We have isolated complementary DNA and genomic clones for the mouse alpha 2(IV) collagen chain and here characterize 64-, 123- and 182-bp exons in the Gly-X-Y coding domain of the gene. The data suggest that the alpha 2(IV) collagen gene may have evolved differently from those encoding the fibrillar collagens.

Keywords

Mice, Base Sequence, Animals, Collagen, DNA, Biological Evolution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Average
Top 10%
Top 1%