Evolution of the Amylase Isozymes in the Drosophila melanogaster Species Subgroup
pmid: 10626037
Evolution of the Amylase Isozymes in the Drosophila melanogaster Species Subgroup
The relationship between the net charge of molecules and their mobility on electrophoresis was analyzed for Drosophila alpha-amylases. Most of the differences in electrophoretic mobility, 98.2%, can be explained by the charge state. Therefore five reference amino acid sites, which are informative residues for charge differences among amylase isozymes, were considered for the evolution of the isozymes in Drosophila melanogaster. The amylase isozymes in D. melanogaster can be classified into three groups, I (AMY1, AMY2, and AMY3-A), II (AMY3-B and AMY4), and III (AMY5, AMY6-A, and AMY6-B), based on the differences in the reference sites. The most primitive amylase in D. melanogaster was found to belong to Group I, most likely the AMY2 isozyme. Groups II and III could have been derived from Group I. These results were confirmed by the analysis of 38 amino acid sites with charge differences in Drosophila.
- University of Tokushima Japan
Electrophoresis, Molecular Sequence Data, Evolution, Molecular, Isoenzymes, Drosophila melanogaster, Species Specificity, Amylases, Animals, Insect Proteins, Amino Acid Sequence, Phylogeny
Electrophoresis, Molecular Sequence Data, Evolution, Molecular, Isoenzymes, Drosophila melanogaster, Species Specificity, Amylases, Animals, Insect Proteins, Amino Acid Sequence, Phylogeny
13 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
