Powered by OpenAIRE graph

A Potent, Selective Inhibitor of Matrix Metalloproteinase-3 for the Topical Treatment of Chronic Dermal Ulcers

Authors: M Jonathan, Fray; Roger P, Dickinson; John P, Huggins; Nicholas L, Occleston;

A Potent, Selective Inhibitor of Matrix Metalloproteinase-3 for the Topical Treatment of Chronic Dermal Ulcers

Abstract

The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix (required for cell migration) and growth factors and their receptors. The overexpression of MMP-3 (stromelysin-1) and MMP-13 (collagenase-3) is associated with nonhealing wounds, whereas active MMPs-1, -2, -9, and -14 are required for normal wound healing to occur. We describe the synthesis and enzyme inhibition profile of (3R)-3-[([(1S)-2,2-dimethyl-1-(([(1S)-2-methoxy-1-phenylethyl]amino)carbonyl)propyl]amino)carbonyl]-6-(3-methyl-4-phenylphenyl)hexanoic acid (UK-370,106, 7), which is a potent inhibitor of MMP-3 (IC(50) = 23 nM) with >1200-fold weaker potency vs MMP-1, -2, -9, and -14. MMP-13, which may also contribute to the pathology of chronic wounds, was inhibited about 100-fold less potently by compound 7. Compound 7 potently inhibited cleavage of [(3)H]-fibronectin by MMP-3 (IC(50) = 320 nM) but not cleavage of [(3)H]-gelatin by either MMP-2 or -9 (up to 100 microM). Compound 7 had little effect, at MMP-3 selective concentrations, on keratinocyte migration over a collagen matrix in vitro, which is a model of the re-epithelialization process. Following iv (rat) or topical administration to dermal wounds (rabbit), compound 7 was cleared rapidly (t(1/2) = 23 min) from plasma, but slowly (t(1/2) approximately 3 days) from dermal tissue. In a model of chronic dermal ulcers, topical administration of compound 7 for 6 days substantially inhibited MMP-3 ex vivo. These data suggest compound 7 is sufficiently potent to inhibit MMP-3-mediated matrix degradation while leaving unaffected cellular migration mediated by MMPs 1, 2, and 9. These properties make compound 7 a suitable candidate for progression to clinical trials in human chronic dermal wounds, such as venous ulcers.

Related Organizations
Keywords

Keratinocytes, Male, Stereoisomerism, Matrix Metalloproteinase Inhibitors, Administration, Cutaneous, Skin Diseases, Fibronectins, Structure-Activity Relationship, Cell Movement, Chronic Disease, Animals, Gelatin, Humans, Matrix Metalloproteinase 3, Polycyclic Compounds, Protease Inhibitors, Rabbits, Caproates, Cells, Cultured, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%