Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Chemical Society
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Quasiracemic Crystallization as a Tool To Assess the Accommodation of Noncanonical Residues in Nativelike Protein Conformations

Authors: Katrina T. Forest; David E. Mortenson; Samuel H. Gellman; Kenneth A. Satyshur; Ilia A. Guzei;

Quasiracemic Crystallization as a Tool To Assess the Accommodation of Noncanonical Residues in Nativelike Protein Conformations

Abstract

Quasiracemic crystallization has been used to obtain high-resolution structures of two variants of the villin headpiece subdomain (VHP) that contain a pentafluorophenylalanine (F(5)Phe) residue in the hydrophobic core. In each case, the crystal contained the variant constructed from l-amino acids and the native sequence constructed from d-amino acids. We were motivated to undertake these studies by reports that racemic proteins crystallize more readily than homochiral forms and the prospect that quasiracemic crystallization would enable us to determine whether a polypeptide containing a noncanonical residue can closely mimic the tertiary structure of the native sequence. The results suggest that quasiracemic crystallization may prove to be generally useful for assessing mimicry of naturally evolved protein folding patterns by polypeptides that contain unnatural side-chain or backbone subunits.

Keywords

Models, Molecular, Protein Conformation, Phenylalanine, Microfilament Proteins, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze