Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Microbiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Microbiology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum

Authors: Rob DeSalle; Daniel H. Fine; Paul J. Planet; David H. Figurski; Scott C. Kachlany;

Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum

Abstract

The Gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans forms an extremely tenacious biofilm on solid surfaces such as glass, plastic and hydroxyapatite. This characteristic is likely to be important for colonization of the oral cavity and initiation of a potentially devastating form of periodontal disease. Genetic analysis has revealed a cluster of tad genes responsible for tight adherence to surfaces. Evidence indicates that the tad genes are part of a locus encoding a novel secretion system for the assembly and release of long, bundled Flp pili. Remarkably similar tad loci appear in the genomes of a wide variety of Gram-negative and Gram-positive bacteria, including many significant pathogens, and in Archaea. We propose that the tad loci are important for microbial colonization in a variety of environmental niches.

Keywords

Virulence, Molecular Sequence Data, Aggregatibacter actinomycetemcomitans, Bacterial Adhesion, Genes, Archaeal, Genes, Bacterial, Biofilms, Fimbriae, Bacterial, DNA Transposable Elements, Humans, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 10%
Top 10%
Top 10%