Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2003
versions View all 4 versions

A Role for Neuregulin1 Signaling in Muscle Spindle Differentiation

Authors: Hippenmeyer, S.; Shneider, N. A.; Birchmeier, C.; Burden, S. J.; Jessell, T. M.; Arber, S.;

A Role for Neuregulin1 Signaling in Muscle Spindle Differentiation

Abstract

The maturation of synaptic structures depends on inductive interactions between axons and their prospective targets. One example of such an interaction is the influence of proprioceptive sensory axons on the differentiation of muscle spindles. We have monitored the expression of three transcription factors, Egr3, Pea3, and Erm, that delineate early muscle spindle development in an assay of muscle spindle-inducing signals. We provide genetic evidence that Neuregulin1 (Nrg1) is required for proprioceptive afferent-evoked induction of muscle spindle differentiation in the mouse. Ig-Nrg1 isoforms are preferentially expressed by proprioceptive sensory neurons and are sufficient to induce muscle spindle differentiation in vivo, whereas CRD-Nrg1 isoforms are broadly expressed in sensory and motor neurons but are not required for muscle spindle induction.

Country
Switzerland
Keywords

Male, Mice, Knockout, Motor Neurons, Neuroscience(all), Neuregulin-1, Gene Expression Regulation, Developmental, Cell Differentiation, Proprioception, DNA-Binding Proteins, Mice, Fetus, Ganglia, Spinal, Mutation, Animals, Protein Isoforms, Female, Neurons, Afferent, Muscle, Skeletal, Early Growth Response Protein 3, Muscle Spindles, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 10%
hybrid