Isolation of a bi-directional promoter directing expression of the mouse GABPα and ATP synthase coupling factor 6 genes
pmid: 11167019
Isolation of a bi-directional promoter directing expression of the mouse GABPα and ATP synthase coupling factor 6 genes
The GA-binding protein (GABP) is a ubiquitous heteromeric transcription factor implicated in the regulation of several genes involved in mitochondrial energy metabolism including subunits of cytochrome c oxidase, ATP synthase, and mitochondrial transcription factor 1 (mtTF1). GABPalpha subunit binds the PEA3/Ets binding sites (EBS), while GABPbeta contains a transcription activation domain and mediates alphabeta dimer and alpha(2)beta(2) tetramer formation essential for activation of transcription. Here we report the cloning of 2449 bp of the mouse (m) GABPalpha promoter region including 201 bp of the 5' end of the published mGABPalpha cDNA sequence. Surprisingly, sequences homologous to the 5'UTR of mouse, rat and human mitochondrial ATP synthase coupling factor 6 (ATPsynCF6) cDNAs were found165-240 bp upstream of the mGABPalpha cDNA. A search of the non-redundant nucleotide database revealed a human genomic sequence derived from chromosome 21 (21q22) bearing significant homology to the mGABPalpha/ATPsynCF6 promoter region and encompassed the entire hGABPalpha and hATPsynCF6 genes. Primer extension analysis revealed multiple transcription start sites for both mGABPalpha and mATPsynCF6 mRNAs that mapped near the published cDNA 5' ends. Sequence analysis identified several binding sites upstream of the GABPalpha cDNA sequence including sites for GABP (-86, -104, -169, -257, and -994), YY1 (-57), Sp1 (-242 and -226), and NRF1 (-5). No 'TATA' motif was identified near either the GABPalpha or ATPsynCF6 transcription start sites. The human and mouse promoters retain significant sequence identity including binding sites for several tissue-specific transcription factors. Transient transfection assays using Luciferase reporter constructs containing the intergenic region and flanking sequences confirmed that this region of DNA promotes transcription in both directions.
- University of Missouri Health System United States
- University of Missouri United States
Binding Sites, Base Sequence, Molecular Sequence Data, DNA, Exons, Mitochondrial Proton-Translocating ATPases, GA-Binding Protein Transcription Factor, Introns, Cell Line, DNA-Binding Proteins, Mice, Protein Subunits, Gene Expression Regulation, Genes, Animals, Humans, DNA, Intergenic, Luciferases, Promoter Regions, Genetic, Protein Binding
Binding Sites, Base Sequence, Molecular Sequence Data, DNA, Exons, Mitochondrial Proton-Translocating ATPases, GA-Binding Protein Transcription Factor, Introns, Cell Line, DNA-Binding Proteins, Mice, Protein Subunits, Gene Expression Regulation, Genes, Animals, Humans, DNA, Intergenic, Luciferases, Promoter Regions, Genetic, Protein Binding
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
