Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Growth hormone and insulin-like growth factor-I enhance β-glucuronidase gene activation by androgen in mouse kidney

Authors: Gemma L Niermann; Gordon Watson;

Growth hormone and insulin-like growth factor-I enhance β-glucuronidase gene activation by androgen in mouse kidney

Abstract

Beta-glucuronidase (GUS) is a lysosomal enzyme that, in mouse kidney, is subject to control by multiple hormones: androgen, which increases GUS transcription; estrogen, which antagonizes androgen-mediated stimulation of GUS; and growth hormone (GH), which appears to be necessary for the full androgen effect. Neither estrogen nor GH affects GUS in the absence of androgen. In hypophysectomized or pituitary dwarf mice the reduced androgen stimulation of GUS can be partially restored with GH treatment. Androgen-induced GUS mRNA increased significantly with intermittent GH, compared to no GH or continuous GH. Intact mice subjected to continuous infusion of GH showed a depressed androgen effect on GUS similar to that seen in GH-deficient mice. Thus, pulsatile GH is required for the full androgen response. Insulin-like growth factor-I (IGF-I) also restored GUS induction by androgen in GH-deficient mice. We conclude that GH enhances the effect of androgen on the GUS gene via IGF-I. Using transgenic mice, we have also identified a genetic variant of the GUS gene that is insensitive to GH enhancement of the androgen effect.

Related Organizations
Keywords

Male, Mice, Inbred BALB C, Periodicity, Dwarfism, Mice, Transgenic, Kidney, Mice, Inbred C57BL, Mice, Growth Hormone, Animals, Female, Testosterone, RNA, Messenger, Insulin-Like Growth Factor I, Orchiectomy, Glucuronidase, Hypophysectomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average