Native and heterologous neuropeptides are cardioactive in Drosophila melanogaster
pmid: 10818250
Native and heterologous neuropeptides are cardioactive in Drosophila melanogaster
Nine neuropeptides isolated from Drosophila melanogaster and five neuropeptides, previously isolated from the CNS of Limulus with antisera to FMRFamide-related peptides, were tested for their effects on the myogenic heart of Drosophila melanogaster. Of the native peptides, TDVDHVFLRF-NH(2) (Dromyosuppressin), DPKQDFMRFamide, and PDNFMRFamide significantly slowed the heart. Of the Limulus peptides, DEGHKMLYFamide (LP1) increased heart rate significantly, GHSLLHFamide (LP2) and PDHHMMYFamide (LP3) decreased the heart's rate, while DHGNMLYFamide (LP4) and GGRSPSLRLRFamide (LP5) had no effect at the concentrations we employed. Dromyosuppressin, DPKQDFMRFamide, and PDNFMRFamide from Drosophila, and LP2 and LP3 from Limulus, which belong to a novel group of peptides structurally unrelated to FMRFamide, are among only a very few substances from within the general group of neuropeptides and neurohormones known to slow the heart of Drosophila, and as such offer an important tool for investigating the molecular mechanisms underlying the control of the pacemaker.
- University of Maine United States
- University of Maine United States
4 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 1995IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
