Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Methods
Article . 2015
versions View all 2 versions

Fluorescence-based imaging of autophagy progression by human WIPI protein detection

Authors: Ann-Katrin Thost; Pierre Dönnes; Oliver Kohlbacher; Tassula Proikas-Cezanne;

Fluorescence-based imaging of autophagy progression by human WIPI protein detection

Abstract

Central to the process of macroautophagy (hereafter autophagy) is the formation of autophagosomes, double-membrane vesicles that sequester cytoplasmic cargo, including proteins, lipids and organelles, for lysosomal degradation and macromolecule recycling. Tight regulation of both autophagic activity and capacity is crucial to secure cellular homeostasis and aberrant autophagy is tightly linked to the development of many human diseases. Hence it is of great importance to accurately measure autophagy progression in health and disease. Members of the human WIPI β-propeller proteins associate with autophagosomal membranes due to specific phosphatidylinositol 3-phosphate (PtdIns3P) binding at the onset of autophagy. The specific autophagosomal localization of both WIPI1 and WIPI2 (refered to as WIPI puncta) has been employed to assess autophagy using fluorescence microscopy methods, such as confocal and live-cell video microscopy and was extended for automated high-throughput image acquisition and analyses procedures. We here provide an overview on the employment of human WIPI members for the assessment of autophagy in higher eukaryotic cells, suitable for systems biology approaches such as mathematical modelling.

Keywords

Systems Biology, Autophagy-Related Proteins, Membrane Proteins, Phosphate-Binding Proteins, Fluorescence, Phosphatidylinositol Phosphates, Cell Line, Tumor, Phagosomes, Autophagy, Humans, Carrier Proteins, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%