Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2012
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2012 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

A functional link between localized Oskar, dynamic microtubules, and endocytosis

Authors: Sanghavi, Paulomi; Lu, Sumin; Gonsalvez, Graydon B.;

A functional link between localized Oskar, dynamic microtubules, and endocytosis

Abstract

Many cell types including developing oocytes, fibroblasts, epithelia and neurons use mRNA localization as a means to establish polarity. The Drosophila oocyte has served as a useful model in dissecting the mechanism of mRNA localization. The polarity of the oocyte is established by the specific localization of three critical mRNAs-oskar, bicoid and gurken. The localization of these mRNAs requires microtubule integrity, and the activity of microtubule motors. However, the precise organization of the oocyte microtubule cytoskeleton remains an open question. In order to examine the polarity of oocyte microtubules, we visualized the localization of canonical microtubule plus end binding proteins, EB1 and CLIP-190. Both proteins were enriched at the posterior of the oocyte, with additional foci detected within the oocyte cytoplasm and along the cortex. Surprisingly, however, we found that this asymmetric distribution of EB1 and CLIP-190 was not essential for oskar mRNA localization. However, Oskar protein was required for recruiting the plus end binding proteins to the oocyte posterior. Lastly, our results suggest that the enrichment of growing microtubules at the posterior pole functions to promote high levels of endocytosis in this region of the cell. Thus, multiple polarity-determining pathways are functionally linked in the Drosophila oocytes.

Related Organizations
Keywords

Cell Polarity, Cell Biology, Microtubules, Endocytosis, Glycogen Synthase Kinase 3, Oocytes, Animals, Drosophila Proteins, Drosophila, Female, Molecular Biology, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Top 10%
hybrid