Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Analysis of Cyp26b1/Rarg compound-null mice reveals two genetically separable effects of retinoic acid on limb outgrowth

Authors: Glenn MacLean; Don Cameron; Tracie Pennimpede; Martin Petkovich;

Analysis of Cyp26b1/Rarg compound-null mice reveals two genetically separable effects of retinoic acid on limb outgrowth

Abstract

The role of retinoic acid (RA) in limb development is unclear, although it has been suggested to be a proximalizing factor which plays a morphogenetic role in pattern formation. Exogenous RA produces a teratogenic effect on limb morphology; similarly, changes in the endogenous distribution of RA following genetic ablation of the RA-metabolizing enzyme, CYP26B1, result in phocomelia accompanied by changes in expression of proximo-distal (P-D) patterning genes, increased cell death, and delayed chondrocyte maturation. Here we show that disruption of RA receptor (RAR) gamma in a Cyp26b1(-/-) background is able to partially rescue limb skeletal morphology without restoring normal expression of proximo-distal patterning genes. We further show that embryos deficient in CYP26B1 exhibit early localized domains of mesenchymal cell death, which are reduced in compound-null animals. This model reveals two genetically separable effects of RA in the limb: an apoptotic effect mediated by RARgamma in the presence of ectopic RA, and a P-D patterning defect which is uncovered following the loss of both CYP26B1 and RARgamma. These data provide genetic evidence to clarify the roles of both RA and CYP26B1 in limb outgrowth and proximo-distal patterning.

Keywords

Mice, Knockout, RARγ, Mouse, Receptors, Retinoic Acid, Apoptosis, Extremities, Tretinoin, Retinoic Acid Receptor gamma, Cell Biology, Retinoic Acid 4-Hydroxylase, Mice, Cytochrome P-450 Enzyme System, CYP26B1, Retinoic acid, Teratogenesis, Animals, Proximo-distal patterning, Molecular Biology, Limb development, In Situ Hybridization, Developmental Biology, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
hybrid