Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly

Authors: Zhang, Chengjin; Li, Qing; Lim, Chiaw-Hwee; Qiu, Xuehui; Jiang, Yun-Jin;

The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly

Abstract

Both mind bomb (mib) and mind bomb-2 (mib2) encode RING E3 ubiquitin ligases that promote Delta ubiquitylation and endocytosis in Notch activation. Detailed morphological and molecular examinations revealed that zebrafish mib(ta52b) (missense mutation in the C-terminal RING Finger (RF), M1013R) and mib(m132) (nonsense mutation resulting in a truncated protein that loses all three RFs, C785stop) are strong and weak antimorphic alleles, respectively, compared to the null allele, mib(tfi91) (nonsense mutation resulting in a truncated protein of only 60 amino acids, Y60stop). Zebrafish mib2 ortholog was identified in this study. Zebrafish Mib and Mib2 are colocalized in transfected cells and function redundantly in regulating Notch signaling in embryos. Mib(ta52b) and Mib(m132) have a dosage-dependent dominant-negative effect, at least, on Mib2, which is a molecular basis for the antimorphic phenotypes. It was also shown that Notch signaling negatively regulates mib expression in a Su(H)-dependent manner, forming a negative feedback loop in modulating Notch activation.

Keywords

Notch, Embryo, Nonmammalian, mib alleles, Ubiquitin-Protein Ligases, Mib homologs, Animals, Cloning, Molecular, Molecular Biology, E3 ligase, Alleles, In Situ Hybridization, Zebrafish, Receptors, Notch, Cell Biology, Oligonucleotides, Antisense, Zebrafish Proteins, Immunohistochemistry, Endocytosis, Gene Expression Regulation, Delta, Mutation, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid