<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The odor coding system of Drosophila

pmid: 15313555
The odor coding system of Drosophila
Our understanding of the molecular and cellular organization of the Drosophila melanogaster olfactory system has increased dramatically in recent years. A large family of approximately 60 odorant receptors has been identified, and many of these receptors have been functionally characterized. The odor responses of olfactory receptor neurons have been characterized, and much has been learned about how odors are represented in olfactory centers in the brain. The circuitry of the olfactory system has been studied in detail, and the developmental mechanisms that specify the wiring and functional diversity of olfactory neurons are becoming increasingly well understood. Thus, functional, anatomical and developmental studies are rapidly being integrated to form a unified picture of odor coding in this model olfactory system.
- Yale University United States
Smell, Odorants, Animals, Drosophila, Receptors, Odorant, Olfactory Receptor Neurons
Smell, Odorants, Animals, Drosophila, Receptors, Odorant, Olfactory Receptor Neurons
116 Research products, page 1 of 12
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).153 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%