Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Subcellular distribution of L-type calcium channel subtypes in rat hippocampal neurons

Authors: Beulah Leitch; A. Szostek; Olga Shevtsova; R. Lin;

Subcellular distribution of L-type calcium channel subtypes in rat hippocampal neurons

Abstract

L-type calcium channels play an essential role in synaptic activity-dependent gene expression and are implicated in long-term alterations in synaptic efficacy underlying learning and memory in the hippocampus. The two principal pore-forming subunits of L-type Ca2+ channels expressed in neurons are the Ca(v)1.2 (alpha(1C)) or Ca(v)1.3 (alpha(1D)) subtypes. Experimental evidence suggests that calcium entry through Ca(v)1.2 and Ca(v)1.3 Ca2+ channels occurs in close proximity to key signalling molecules responsible for triggering signalling pathways leading to transcriptional responses. Determining the subcellular distribution of Ca(v)1.2 and Ca(v)1.3 L-type channels in neurons is clearly important for unravelling the molecular mechanisms underlying long-term alterations in neuronal function. In this study, we used immunogold-labelling techniques and electron-microscopy (EM) to analyse the subcellular distribution and density of both Ca(v)1.2 and Ca(v)1.3 Ca2+ channels in rat hippocampal CA1 pyramidal cells in vivo. We confirm that both Ca(v)1.2 and Ca(v)1.3 channel subtypes are predominantly but not exclusively located in postsynaptic dendritic processes and somata. Both Ca(v)1.2 and Ca(v)1.3 are distributed throughout the dendritic tree. However, the smallest (distal) dendritic processes and spines have proportionally more calcium channels inserted into their plasma membrane than located within cytoplasmic compartments indicating the potential targeting of calcium channels to microdomains within neurons. Ca(v)1.2 and Ca(v)1.3 Ca2+ channels are located at the postsynaptic density and also at extra-synaptic sites. The location of L-type Ca(v)1.2 and Ca(v)1.3 channels in distal dendrites and spines would thus place them at appropriate sites where they could initiate synapse to nucleus signalling.

Related Organizations
Keywords

Male, Cytoplasm, Calcium Channels, L-Type, Dendritic Spines, Pyramidal Cells, Cell Membrane, Dendrites, Immunohistochemistry, Rats, Microscopy, Electron, Synapses, Animals, Calcium Channels, Rats, Wistar, CA1 Region, Hippocampal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%