Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice
pmid: 21376063
Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice
Disrupted-In-Schizophrenia-1 (DISC1) is a strong genetic risk factor associated with psychiatric disorders. Two distinct mutations in the second exon of the DISC1 gene (Q31L and L100P) lead to either depression- or schizophrenia-like behavior in mice. Both phosphodiesterase-4B (PDE4B) and glycogen synthase kinase-3 (GSK-3) have common binding sites on N-terminal region of DISC1 and are implicated into etiology of schizophrenia and depression. It is not known if PDE4B and GSK-3 could converge signals in the cell via DISC1 at the same time. The purpose of the present study was to assess whether rolipram (PDE4 inhibitor) might synergize with TDZD-8 (GSK-3 blocker) to produce antipsychotic effects at low doses on the DISC1-L100P genetic model. Indeed, combined treatment of DISC1-L100P mice with rolipram (0.1 mg/kg) and TDZD-8 (2.5 mg/kg) in sub-threshold doses corrected their Pre-Pulse Inhibition (PPI) deficit and hyperactivity, without any side effects at these doses. We have suggested that rolipram-induced increase of cAMP level might influence GSK-3 function and, hence the efficacy of TDZD-8. Our second goal was to estimate how DISC1-Q31L with reduced PDE4B activity, and therefore mimicking rolipram-induced conditions, could alter pharmacological response to TDZD-8, GSK-3 activity and its interaction with DISC1. DISC1-Q31L mutants showed increased sensitivity to GSK-3 inhibitor compare to DISC1-L100P mice. TDZD-8 (2.5 mg/kg) was able to correct PPI deficit, reduce immobility in the forced swim test (FST) and increased social motivation/novelty. In parallel, biochemical analysis revealed significantly reduced binding of GSK-3 to the mutated DISC1-Q31L and increased enzymatic activity of GSK-3. Taken together, genetic variations in DISC1 influence formation of biochemical complex with PDE4 and GSK-3 and strength the possibility of synergistic interactions between these proteins.
- University of Toronto Canada
- Centre for Addiction and Mental Health Canada
- Lunenfeld-Tanenbaum Research Institute Canada
- Mount Sinai Hospital Canada
Male, Genetic Variation, Nerve Tissue Proteins, Motor Activity, Mice, Mutant Strains, Cyclic Nucleotide Phosphodiesterases, Type 4, Mice, Inbred C57BL, Glycogen Synthase Kinase 3, Mice, Thiadiazoles, Animals, Phosphodiesterase 4 Inhibitors, Rolipram, Protein Binding
Male, Genetic Variation, Nerve Tissue Proteins, Motor Activity, Mice, Mutant Strains, Cyclic Nucleotide Phosphodiesterases, Type 4, Mice, Inbred C57BL, Glycogen Synthase Kinase 3, Mice, Thiadiazoles, Animals, Phosphodiesterase 4 Inhibitors, Rolipram, Protein Binding
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
