Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Presynaptic Activity and CaMKII Modulate Retrograde Semaphorin Signaling and Synaptic Refinement

Authors: Carrillo, Robert A.; Olsen, Douglas P.; Yoon, Kenneth S.; Keshishian, Haig;

Presynaptic Activity and CaMKII Modulate Retrograde Semaphorin Signaling and Synaptic Refinement

Abstract

Establishing synaptic connections often involves the activity-dependent withdrawal of off-target contacts. We describe an in vivo role for temporally patterned electrical activity, voltage-gated calcium channels, and CaMKII in modulating the response of Drosophila motoneurons to the chemorepellent Sema-2a during synaptic refinement. Mutations affecting the Sema-2a ligand, the plexin B receptor (plexB), the voltage-gated Ca(v)2.1 calcium channel (cac), or the voltage-gated Na(v)1 sodium channel (mle(nap-ts);tipE) each result in ectopic neuromuscular contacts. Sema-2a interacts genetically with both of the channel mutations. The cac phenotype is enhanced by the Sema-2a mutation and is suppressed by either plexB overexpression or patterned, low-frequency (0.01 Hz) bouts of electrical activity in the embryo. The calcium-dependent suppression of ectopic contacts also depends on the downstream activation of CaMKII. These results indicate a role for patterned electrical activity and presynaptic calcium signaling, acting through CaMKII, in modulating a retrograde signal during the refinement of synaptic connections.

Related Organizations
Keywords

Motor Neurons, Embryo, Nonmammalian, Neuroscience(all), Cell Adhesion Molecules, Neuronal, Muscles, Neuromuscular Junction, Presynaptic Terminals, Action Potentials, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Electric Stimulation, Animals, Genetically Modified, Calcium Channels, N-Type, Larva, Mutation, Animals, Drosophila Proteins, Calcium, Drosophila, Genetic Testing, Calcium-Calmodulin-Dependent Protein Kinase Type 2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid